|
In fluid dynamics, wind waves, or wind-generated waves, are surface waves that occur on the free surface of oceans, seas, lakes, rivers, and canals or even on small puddles and ponds. They result from the wind blowing over an area of fluid surface. Waves in the oceans can travel thousands of miles before reaching land. Wind waves range in size from small ripples, to waves over high. When directly generated and affected by local winds, a wind wave system is called a wind sea. After the wind ceases to blow, wind waves are called swells. More generally, a swell consists of wind-generated waves that are not significantly affected by the local wind at that time. They have been generated elsewhere or some time ago.〔Holthuijsen (2007), page 5.〕 Wind waves in the ocean are called ocean surface waves. Wind waves have a certain amount of randomness: subsequent waves differ in height, duration, and shape with limited predictability. They can be described as a stochastic process, in combination with the physics governing their generation, growth, propagation and decay—as well as governing the interdependence between flow quantities such as: the water surface movements, flow velocities and water pressure. The key statistics of wind waves (both seas and swells) in evolving sea states can be predicted with wind wave models. Although waves are usually considered in the water seas of Earth, the hydrocarbon seas of Titan may also have wind-driven waves.〔Lorenz, R. D. and A. G. Hayes, The Growth of Wind-Waves in Titan's Hydrocarbon Seas, Icarus, 219, 468–475, 2012〕 ==Wave formation== The great majority of large breakers seen on a beach result from distant winds. Five factors influence the formation of the flow structures in wind waves:〔 p. 83.〕 * Wind speed or strength relative to wave speed- the wind must be moving faster than the wave crest for energy transfer * The uninterrupted distance of open water over which the wind blows without significant change in direction (called the ''fetch'') * Width of area affected by fetch * Wind duration - the time over which the wind has blown over a given area * Water depth All of these factors work together to determine the size of wind waves and the structures of the flows within: * Wave height (from high trough to crest) * Wave length (from crest to crest) * Wave period (time interval between arrival of consecutive crests at a stationary point) * Wave propagation direction A fully developed sea has the maximum wave size theoretically possible for a wind of a specific strength, duration, and fetch. Further exposure to that specific wind could only cause a loss of energy due to the breaking of wave tops and formation of "whitecaps". Waves in a given area typically have a range of heights. For weather reporting and for scientific analysis of wind wave statistics, their characteristic height over a period of time is usually expressed as ''significant wave height''. This figure represents an average height of the highest one-third of the waves in a given time period (usually chosen somewhere in the range from 20 minutes to twelve hours), or in a specific wave or storm system. The significant wave height is also the value a "trained observer" (e.g. from a ship's crew) would estimate from visual observation of a sea state. Given the variability of wave height, the largest individual waves are likely to be somewhat less than twice the reported significant wave height for a particular day or storm. • Sources of wind wave generation: Sea water wave is generated by many kinds of disturbances such as Seismic events, gravity, and crossing wind. The generation of wind wave is initiated by the disturbances of cross wind field on the surface of the sea water. Two major Mechanisms of surface wave formation by winds (a.k.a.‘The Miles-Phillips Mechanism’) and other sources (ex. earthquakes) of wave formation can explain the generation of wind waves. However, if one set a flat water surface (Beaufort Point,0) and abrupt cross wind flows on the surface of the water, then the generation of surface wind waves can be explained by following two mechanisms which initiated by normal pressure fluctuations of turbulent winds and parallel wind shear flows. • The mechanism of the surface wave generation by winds 1) Starts from "Fluctuations of wind" (O.M.Phillips) : the wind wave formation on water surface by wind is started by a random distribution of normal pressure acting on the water from the wind. By the mechanism developed by O.M. Phillips (in 1957), the water surface is initially at rest and wave generation is started by adding turbulent wind flows and then, by the fluctuations of the wind, normal pressure acting on the water surface. From this pressure fluctuation arise normal and tangential stresses to the surface water, which generates wave behavior on the water surface. It is assumed that:- 〔Phillips, O. M. (1957), "On the generation of waves by turbulent wind", Journal of Fluid Mechanics 2 (5): 417–445, Bibcode:1957JFM.....2..417P, doi:10.1017/S0022112057000233〕 # The water originally at rest. # The water is not viscid. # The water is irrotational. # There are random distribution of normal pressure to the water surface from the turbulent wind. # Correlations between air and water motions are neglected. 2) starts from "wind shear forces" on the water surface (J.W.Miles, applied to mainly 2D deep water gravity waves) ; John W. Miles suggested a surface wave generation mechanism which is initiated by turbulent wind shear flows Ua(y), based on the inviscid Orr-Sommerfeld equation in 1957. He found the energy transfer from wind to water surface as a wave speed, c is proportional to the curvature of the velocity profile of wind Ua’’(y) at point where the mean wind speed is equal to the wave speed (Ua=c, where, Ua is the Mean turbulent wind speed). Since the wind profile Ua(y) is logarithmic to the water surface, the curvature Ua’’(y) have negative sign at the point of Ua=c. This relations show the wind flow transferring its kinetic energy to the water surface at their interface, and arises wave speed, c. the growth-rate can be determined by the curvature of the winds ((d^2 Ua)/(dz^2 )) at the steering height (Ua (z=z_h)=c) for a given wind speed Ua 〔Miles, J. W. (1957), "On the generation of surface waves by shear flows", Journal of Fluid Mechanics 3 (2): 185–204, Bibcode:1957JFM.....3..185M, doi:10.1017/S0022112057000567〕 Generally these wave formation mechanisms occur together on the ocean surface and arise wind waves and grows up to the fully developed waves. For example,〔(Chapter 16 - Ocean Waves )〕 If we suppose a very flat sea surface (Beaufort number, 0), and sudden wind flow blows steadily across the sea surface, physical wave generation process will be like; 1. Turbulent wind flows form random pressure fluctuations at the sea surface. Small waves with a few centimeters order of wavelengths is generated by the pressure fluctuations. (The Phillips mechanism〔) 2. The cross wind keep acting on the initially fluctuated sea surface, then the wave become larger. As the wave become larger, the pressure differences get larger along to the wave growing, then the wave growth rate is getting faster. Then the shear instability expedites the wave growing exponentially. (The Miles mechanism〔) 3. The interactions between the waves on the surface generate longer waves (Hasselmann et al., 1973〔Hasselmann K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Mller, D.J. Olbers, K. Richter, W. Sell, and H. Walden. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)' Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe, A(8) (Nr. 12), p.95, 1973.〕) and the interaction will transfer wave energy from the shorter waves generated by the Miles mechanism to the waves have slightly lower frequencies than the frequency at the peak wave magnitudes, then finally the waves will be faster than the cross wind speed (Pierson & Moskowitz〔Pierson, Willard J., Jr. and Moskowitz, Lionel A. Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii, Journal of Geophysical Research, Vol. 69, p.5181-5190, 1964.〕). ((NOTE: Most of the wave speeds calculated from the wave length divided by the period are proportional to sqrt (length). Thus, except for the shortest wave length, the waves follow the deep water theory described in the next section. The 28 ft long wave must be either in shallow water or between deep and shallow.)) 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Wind wave」の詳細全文を読む スポンサード リンク
|